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Table of non-contents

• Deligne–Beilinson cohomology (logarithmic growth);

• Regulator maps (from algebraicK-theory to
Deligne(–Beilinson) cohomology);

• Cycle classes (and normal crossing divisors);

• Secondary characteristic classes;

• Abstract differential cohomology (in a cohesive topos); and

• …a lot of other things.
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Some vague words about some vague things

There is a lot of interplay between smooth, complex-algebraic, and
complex-analytic geometry. Many notions that can be defined in one
setting can also be defined analogously in the other two, and some
settings make certain notions much simpler.

One thing that is very hard in the complex-analytic setting is the
notion of “finiteness” (more specifically, coherence of sheaves of
OX -modules). In all three settings, “finite data” always exists locally
— in the smooth setting, we can patch this local data together with
partitions of unity; in the complex-algebraic setting, this local data
is often “magically” global; in the complex-analytic setting …
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Motivation

Given a complex-analytic manifold, the constant sheaf C has two
important structures:

• the integral structure, coming from Z ↪→ C; and

• the Hodge structure, coming from the de Rham resolution
Ω•
X

∼−→ C.

The former describes topological information, and the latter describes
geometric information.

Deligne cohomology is a theory which contains both of these
structures at once, and gives very powerful tools for understanding
the intricate interplay between topological and geometric objects.
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A sort of motto for complex geometry

Obstructions which are (a priori) geometric are
sometimes actually purely topological.

…in fact, a little bit of topology goes a
surprisingly long way.
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The setting

• X : a paracompact complex-analytic manifold;

• U : a Stein1 open cover of X ;

• OX = Ω0
X : the sheaf of holomorphic functions on X ;

• Ω•
X : the holomorphic de Rham complex on X .

However: everything that we define can be done in the algebraic or
smooth setting, but the properties of the objects are then very
different.

(Feel free to ask me, at any point, what the algebraic analogue of
any statement is, and I will try to answer …)
1Think of Stein as the holomorphic analogue of contractible (for topological
spaces). Important lemma: we can always refine any given open cover to a Stein
subcover.
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Reminder on sheaf cohomology



Notation

Various notions of cohomology:

• H•(X,−) : values in an abelian group;

• H•(X,−) : values in a (complex of) sheaves (cf. next slide);

• H •(−) : internal cohomology of a cochain complex.
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Čech cohomology

In this talk, we will always calculate sheaf cohomology via Čech
cohomology (which we’re allowed2 to do, even without taking a limit
over refinement of covers).

That is, given a complex of sheaves F • on X , we have that

Hq(X,F •) ∼= Ȟ
q
(U ,F •) := H q Tot Č ⋆(U ,F •)

where the Čech bicomplex Č ⋆(U ,F •) is

Č p(U ,F q) :=
∏

α0<...<αp

F q(Uα0...αp)

and where Tot gives the total complex of a bicomplex.

2We assumeX to be paracompact, U is Stein, and the Ωi
X are all coherent.
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Reminder on connections



The Atiyah exact sequence

Let (X,OX) be a ringed space, and E a locally free sheaf of
OX -modules on X .

Definition
The Atiyah exact sequence (or jet sequence) of E is the short exact
sequence of OX -modules

0 → E ⊗OX
Ω1
X → J1(E) → E → 0

where J1(E) := (E ⊗ Ω1
X)⊕ E as a C-module, but with an

OX -action given by

f(s⊗ ω, t) = (fs⊗ ω + t⊗ df, ft).
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Connections on a locally free sheaf

There are a lot of ways of defining/thinking about/understanding
connections, but we’ll use the following.

Definition
A (Koszul) connection ∇ on E is a splitting of the Atiyah exact
sequence of E. That is, a C-linear morphism

∇ : E → E ⊗OX
Ω1
X

satisfying the Leibniz rule

∇(fs) = f∇(s) + s⊗ df

for any local sections s of E, and f of OX .

9/34



Local description of connections

Locally, any connection can be written as

d + ω

where ω ∈ Hom(E,E ⊗ Ω1
X).

Note that, since E is locally free,

Hom(E,E ⊗ Ω1
X) ∼= Hom(E,E)⊗ Ω1

X

and so we can think of ω as an endomorphism-valued form, i.e. a matrix
of 1-forms.
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Curvature

By definition, connections are not OX -linear:

∇(fs) = f∇(s) + s⊗ df 6= f∇(s).

If we compose ∇ with itself, however, we do end up with something
OX -linear:

∇2 : E → E ⊗ Ω2
X

where, to make sense of this composition, we impose the “general”
Leibniz rule

∇(s⊗ ω) = ∇(s) ∧ ω + s⊗ dω.

Definition

We call κ(∇) := ∇2 : E → E ⊗ Ω2
X the curvature of ∇. Note that,

locally, it can be written as dω + ω2.
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Chern–Weil theory

Long story short:

• we can use3 the curvature to get Chern classes of E (that don’t
depend on the choice of ∇); but…

• …unfortunately, in the complex-analytic case, global
holomorphic connections almost never4 exist; but…

• …we can use simplicial constructions as a replacement for
partitions of unity and make things all work out just fine.

3By looking at the trace of κ(∇)p.

4Indeed, since the connection is exactly a splitting of the Atiyah exact sequence,
the Atiyah class (the Ext class of the sequence) is exactly the obstruction towards
the existence of a global connection, and the Atiyah class “is the same as” the first
Chern class. So non-trivial first Chern class =⇒ no global holomorphic
connection exists.
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The Deligne complex and Deligne
cohomology



The Deligne complex

We define5 the constant sheaf Z(p) := (2πi)pZ.

Definition
The (holomorphic) Deligne complex on X is

Z(p)•Del := Z(p) ↪→ OX
d−→ Ω1

X
d−→ . . .

d−→ Ωp−1
X

= Z(p)[0]⊕ Ω•⩽p−1
X [−1].

(As previously mentioned, we can define this in any setting where
the notation makes sense.)

5The (2πi)p factor comes from the fact that we wish our Chern classes to be
algebraic, and that there is some interplay between the topological and the
holomorphic definitions. Really, this whole story comes from the fact that∫
|z|=1

dz
z

= 2πi…
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Deligne cohomology

Definition
The (p, q)-th Deligne cohomology ofX is

Hq,p
Del(X) := Hq(X,Z(p)•Del).

There is a (graded commutative) ring structure on
⊕

p,q H
q,p
Del(X)

induced by the multiplication

Z(p)•Del ⊗ Z(p′)•Del −→ Z(p+ p′)•Del

(x, y) 7−→


x · y if deg x = 0;

x ∧ dy if deg x > 0 and deg y = p′;

0 otherwise.
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Examples for small values of p and q



The vague idea

Very roughly:

• p is the amount of “(higher) geometry” that we see, and

• q is the cohomological degree.

We are generally interested in the cases where p ⩽ q, with
particular interest in the specific cases Hp,p

Del and H2p,p
Del .
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p = 0

Since Z(0)•Del = Z[0], we recover singular cohomology:

H0,q
Del(X) := Hq(X,Z[0]) ∼= Hq(X,Z).

Z(p)•Del := Z(p) ↪→ OX
d−−→ Ω1

X
d−−→ . . .

d−−→ Ωp−1
X .
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p = 1

The complex Z(1)•Del = (2πi)Z ↪→ OX is quasi-isomorphic to the
complex O×

X [−1] via the exponential exact sequence

0 → (2πi)Z ↪→ OX
exp−−→ O×

X → 0.

We thus obtain an isomorphism

Hq,1
Del(X)

∼−→ Hq(X,O×
X [−1]) ∼= Hq−1(X,O×

X).

Z(p)•Del := Z(p) ↪→ OX
d−−→ Ω1

X
d−−→ . . .

d−−→ Ωp−1
X .
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p = 2

We have the quasi-isomorphism

Z(2) OX Ω1
X

0 O×
X Ω1

X

d

exp −1
2πi

·(−)

dlog

which gives us the isomorphism

Hq,2
Del(X)

∼−→ Hq
(
X, (O×

X

dlog−−→ Ω1
X)[−1]

)
.

Z(p)•Del := Z(p) ↪→ OX
d−−→ Ω1

X
d−−→ . . .

d−−→ Ωp−1
X .
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Summary, for q = 2

If we start thinking about bundles then we can start to formalise this
idea that “p controls the amount of geometry that we see”. So let’s fix
q = 2 and list the results.
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Summary, for q = 2

• H2,0
Del(X) ∼= H2(X,Z)

Smooth principal C×-bundles (i.e. smooth complex line
bundles) on X ;

• H2,1
Del(X) ∼= H1(X,O×

X)

Isomorphism classes of holomorphic principal C×-bundles (i.e.
holomorphic line bundles) on X ;

• H2,2
Del(X) ∼= H1(X,O×

X

dlog−−→ Ω1
X)

Isomorphism classes of holomorphic principal C×-bundles (i.e.
holomorphic line bundles) with (global) holomorphic connections;

• H2,q
Del(X) for q ⩾ 3

Isomorphism classes of holomorphic principal C×-bundles (i.e.
holomorphic line bundles) with flat (global) holomorphic
connections.
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Chern classes



Holomorphic connections

It is a classical fact6 that a holomorphic line bundle on X admits a
(global) holomorphic connection if and only if its first Chern class is
trivial.

This fits with our interpretation of Deligne cohomology, by looking
at the exact sequence

H1(X,O×
X

dlog−−→ Ω1
X)︸ ︷︷ ︸

H2,2
Del(X)

−→ H1(X,O×
X)︸ ︷︷ ︸

H2,1
Del(X)

c1−→ H1(X,Ω1
X).

6An argument using the Atiyah class.
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Recovering other Chern classes

Given a holomorphic line bundle L on X , we have the notion of
the first Chern class c1(L ) living in various cohomology theories:

• ctop1 (L ) ∈ H2(X,Z) in singular cohomology;

• ctdR1 (L ) ∈ H1(X,Ω1
X) in Dolbeault/truncated de Rham

cohomology; and

• cdR1 (L ) ∈ H2
dR(X) in de Rham cohomology.

All three of these can be recovered7 from the first Chern class
cD1 (L ) ∈ H2,1

Del(X) in Deligne cohomology.
7Using the fact that the image of a class in H2,1

Del(X) under dlog lives in
F 1 H2

dR(X), which is a subgroup of H2
dR(X), but also projects onto H1(X,Ω1

X);
we recover singular cohomology from the connecting morphism in the LES
associated to the exponential exact sequence.
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The bundle with connection given by multiplication

The multiplication

Z(1)•Del ⊗ Z(1)•Del → Z(2)•Del

thus allows us to construct, given any two functions
f, g ∈ H0(X,O×

X), a holomorphic line bundle r(f, g) with
connection ∇.
Lemma
Both r(f, g)⊗ r(g, f) and r(1− f, f) are isomorphic to the trivial line
bundle with trivial connection (OX , d).

We won’t mention this again here, but it is useful!
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Other definitions of the Deligne
complex



The mapping cone and the exponential exact sequence

The “good” definition8 of the Deligne complex is as the mapping
cone

Z(p)•Del,∆ := cone(Z⊕ Ω•⩾p
X → Ω•)[−1].

But the exponential exact sequence also gives us the
quasi-isomorphism

Z(p)•Del
∼−→ Ω•<p(dlog)[−1]

:= (O×
X

dlog−−→ Ω1
X → . . . → Ωp−1

X )[−1]

which turns out to be very useful as well.

8We’ll drop the (2πi)p factor for now, just for notational simplicity.
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The mapping cone

The mapping cone gives us the diagram

Z ↪→ OX
d−→ . . .

d−→ Ωp−1
X

Z(p)•Del,∆

Z Ω•⩾p
X

C ∼−→ Ω•
X

idZ d

q-iso

that commutes up to homotopy (since the composition of two arrows
in a distinguished triangle is homotopic to zero).
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Differential cohomology (briefly)



The idea behind differential cohomology

The “n-POV” of Deligne cohomology is that it is just one specific
cocycle model for a more abstract theory, called differential
cohomology9, which can be defined as some functors H•

diff into groups
such that we have two short exact sequences (which further fit
together into the differential cohomology hexagon).

I like to think of this as a sort of “motivic” style approach: we
simply posit the existence of some natural transformations into
other known cohomology theories and ask that they behave nicely.

Some other models for differential cohomology include
Cheeger–Simons differential characters (or secondary characteristic classes)
and bundle gerbes (or circle n-bundles) with connection.

9Or, more precisely, ordinary differential cohomology, since it is an enrichment of
ordinary (i.e. Betti, or singular) integral cohomology.
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The two natural transformations

We require the existence of two natural transformations:

1. the characteristic class c : H•
diff(−) ⇒ H•(−,Z); and

2. the curvature F : H•
diff(−) ⇒ Ω•

cl(−).

The former recovers the first Chern class of a line bundle in
degree 2, and the Dixmier–Douady class of a bundle gerbe in
degree 3; the latter actually lands in closed differential forms with
integral periods (i.e. for all γ : Sn → X , we have∫
Sn γ

∗ω ∈ Z ⊂ RR).
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The two short exact sequences

We also require the natural transformations to give us two short
exact sequences:

1. the characteristic class exact sequence

0 → Ωn−1(X)/Ωn−1
int (X) → Hn

diff(X)
c−→ Hn(X,Z) → 0 ;

2. the curvature exact sequence

0 → Hn−1(X,U(1)) → Hn
diff(X)

F−→ Ωn
int(X) → 0.

(As we mentioned above, these two sequences fit together in a
lovely hexagon, but we’re not going to talk about that.)
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Bundle gerbes



The rough idea

To talk about bundle gerbes, we really need to talk about principal
2-bundles, and thus about Lie 2-groups, and thus about 2-groups…

…but this would take more time than I currently have, so let’s just
be vague!

Nomenclature warning: bundle gerbes are neither special cases
nor generalisations of gerbes10 (but they are somehow related).

Definition (…sort of)
Bundle gerbes are geometric objects that realise the 3-dimensional
cohomology of a manifold.

10“Recall” that a gerbe is a sheaf of categories.
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The analogy

Up to an abuse of nomenclature (restricting to only certain
subclasses of the objects in questions), we have the following
analogy from [Mur08]:

[Mur08] Michael K Murray, “An Introduction to Bundle Gerbes”.
arXiv:0712.1651v3 [math.DG].
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Michael K Murray, “An Introduction to Bundle Gerbes”

There are basically three ways of thinking about U(1) bundles over a
manifoldM :

(1) A certain kind of locally free sheaf onM .

(2) A co-cycle gαβ : Uα ∩ Uβ → U(1) for some open cover
U = {Uα | α ∈ I} ofM .

(3) A principal U(1) bundle P → M .

In the case of gerbes overM we can think of these as:

(1) A certain kind of sheaf of groupoids onM .

(2) A co-cycle gαβγ : Uα ∩ Uβ ∩ Uγ → U(1) for some open cover
U = {Uα | α ∈ I} ofM or alternatively a choice of U(1) bundle
Pαβ → Uαβ for each double overlap.

(3) A bundle gerbe.11

11Rapidly: a surjective submersion Y → M and a U(1)-bundle P → Y [2] ⊂ Y 2

with an associative multiplication isomorphism π∗
3(P )⊗ π∗

1(P ) → π∗
2(P ). 31/34
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(2) A co-cycle gαβ : Uα ∩ Uβ → U(1) for some open cover
U = {Uα | α ∈ I} ofM .

(3) A principal U(1) bundle P → M .

In the case of gerbes overM we can think of these as:

(1) A certain kind of sheaf of groupoids onM .

(2) A co-cycle gαβγ : Uα ∩ Uβ ∩ Uγ → U(1) for some open cover
U = {Uα | α ∈ I} ofM or alternatively a choice of U(1) bundle
Pαβ → Uαβ for each double overlap.

(3) A bundle gerbe.11
11Rapidly: a surjective submersion Y → M and a U(1)-bundle P → Y [2] ⊂ Y 2

with an associative multiplication isomorphism π∗
3(P )⊗ π∗

1(P ) → π∗
2(P ). 31/34



Intermediate Jacobians



Picard, Jacobian, and Albanese varieties

Recall that the Jacobian variety of an algebraic curve X is the
connected component of the identity of the Picard variety of X . Dual
(as abelian varieties) to the Picard variety is the Albanese variety of
X , which is the “free abelianisation”.

These two constructions (the Jacobian and the Albanese) appear as
the extreme cases of a more general construction: that of the
intermediate Jacobian.
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The intermediate Jacobian

Definition

The p-th intermediate Jacobian Jp+1(X) of a smooth projective
complex variety X is, as a real manifold,

Jp+1(X) := H2p+1(X,R)/H2p+1(X,Z).

This can be endowed with two12 complex structures: the Griffiths
and theWeil.

(More generally we can define the p-th intermediate Jacobian of
any weight-(2p+ 1) Hodge structure H as
J(H) = HC/(HZ⊕F p+1).)

12The resulting complex manifolds are not isomorphic as complex manifolds, but
are isomorphic as real symplectic manifolds.
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This can be endowed with two12 complex structures: the Griffiths
and theWeil.

(More generally we can define the p-th intermediate Jacobian of
any weight-(2p+ 1) Hodge structure H as
J(H) = HC/(HZ⊕F p+1).)
12The resulting complex manifolds are not isomorphic as complex manifolds, but
are isomorphic as real symplectic manifolds.
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The relation to Deligne cohomology

Theorem
We have the short exact sequence of abelian groups

0 → J2p−1(X) → H2p,p
Del (X) → Hp,p

Z (X) → 0.

This follows, for example, from the short exact sequences of
differential cohomology (along with some other lemmas).
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Thank you for listening.
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