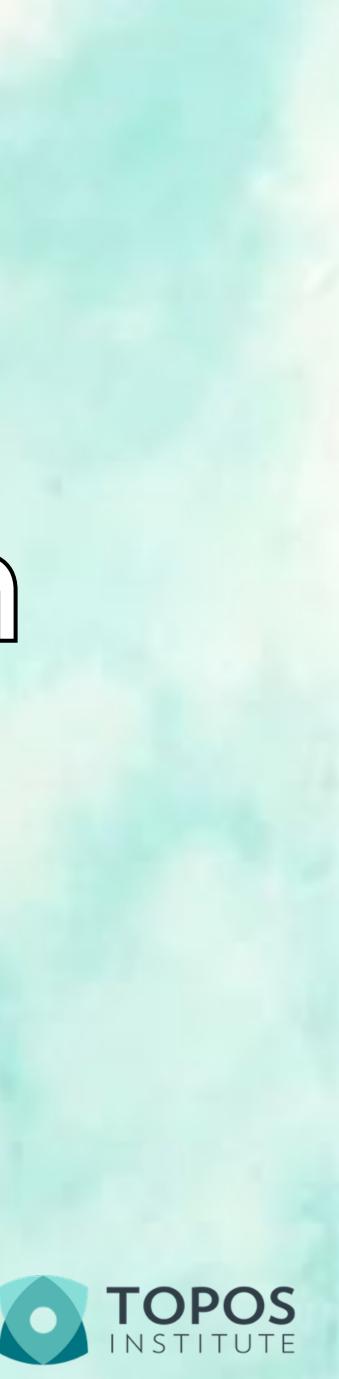
Homotopical methods in complex geometry The surprising power of topology

Tim Hosgood GSTGC 2021

Overview (If things go to plan)

- Why topology might seem useless
- 2. Some counter-examples
 - A. Simplicial connections
 - B. Stein and Oka manifolds
 - C. Deligne cohomology
 - D. Twisting cochains, deformation theory, and analytic HAG
- 3. Yet another way to define vector bundles

1. Why topology might seem useless



Being continuous is "easy"

- Every complex-manifold has an underlying topological space.
- Every holomorphic map is continuous (and even infinitely differentiable).
- Every holomorphic vector bundle has an underlying smooth vector bundle.

"topological structure".

In general, there is a forgetful functor from "holomorphic structure" to

Being holomorphic is "hard"

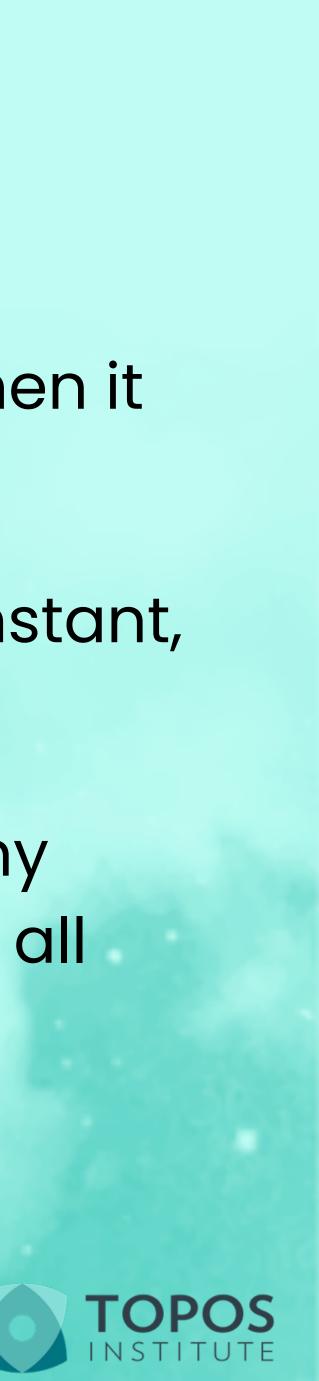
- is globally constant.
- or such that $f(\mathbb{C})$ is either the whole of \mathbb{C} or $\mathbb{C} \setminus \{a\}$ for some $a \in \mathbb{C}$.
- values in \mathbb{C} , with at most a single exception, infinitely often.

• • •

If a holomorphic map is constant on any open neighbourhood then it

• If a function is holomorphic on the whole of \mathbb{C} , then it is either constant,

 If a holomorphic function has an essential singularity, then, on any punctured neighbourhood of this singularity, the function attains all



Simplicial connections

- Given a vector bundle $E \rightarrow X$, a connection on E is a linear map $\nabla \colon \Gamma(E) \to \Gamma(T^*M \otimes E)$ satisfying the Leibniz rule: $\nabla(fs) = df \otimes s + f \nabla s$.
- Fact. Every smooth vector bundle admits a connection.
- Fact. Most holomorphic vector bundles do not admit a (global) connection.
- Lemma. If we replace X by the Čech nerve of X (a cofibrant replacement), and consider "simplicial connections", then every holomorphic vector bundle admits a global "connection".
- **Corollary.** We can use Chern-Weil theory to calculate Chern classes (i.e. characteristic classes).

CHERN CLASSES OF COHERENT **ANALYTIC SHEAVES**

A SIMPLICIAL APPROACH

présentée par **Timothy Hosgood**

pour obtenir le grade universitaire de docteur de l'université d'Aix-Marseille

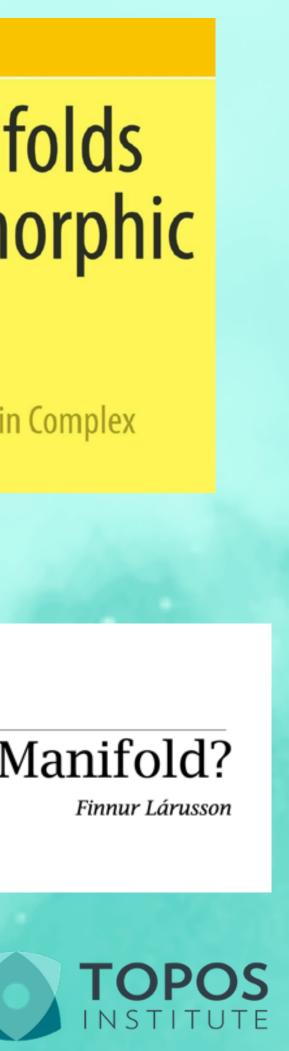
Model categories, and Stein and Oka manifolds

- A good holomorphic analogue to being contractible (or even being affine) is being Stein: holomorphically convex and holomorphically separable.
 - An equivalent definition: there are "lots" of holomorphic maps $X \to \mathbb{C}$ (enough to embed X as a closed complex sub-manifold of \mathbb{C})
- Dual to this is the notion of being Oka: having "lots" of holomorphic maps $\mathbb{C} \to X$.
- Formally, there is a model category which contains all complex manifolds, and with Stein manifolds being cofibrant and Oka manifolds fibrant (with so-called Oka maps being fibrations).
- The *h-principle* (or Oka principle in complex geometry): when solutions to an *analytic* problem exist in the absence of *topological* obstructions.

Franc Forstnerič

Stein Manifolds and Holomorphic Mappings

The Homotopy Principle in Complex Analysis



Deligne cohomology

- Very well understood in the smooth case, but much less so in the holomorphic case.
- The Deligne complex is given by the homotopy pullback of a truncated de Rham complex and \mathbb{Z} .
- More concretely, $\mathbb{Z}_D(p) = (2\pi i)^p \mathbb{Z} \hookrightarrow \Omega^0 \to \Omega^1 \to \dots \to \Omega^{p-1}$, which is quasiisomorphic to $\mathcal{O}^{\times} \xrightarrow{d \log} \Omega^1 \to \Omega^2 \to \ldots \to \Omega^{p-1}$.
- Sheaf cohomology of this complex classifies holomorphic connections on holomorphic line bundles (and, in higher degrees, holomorphic connective structures on holomorphic gerbes)

HOLOMORPHIC GERBES AND THE BEILINSON REGULATOR

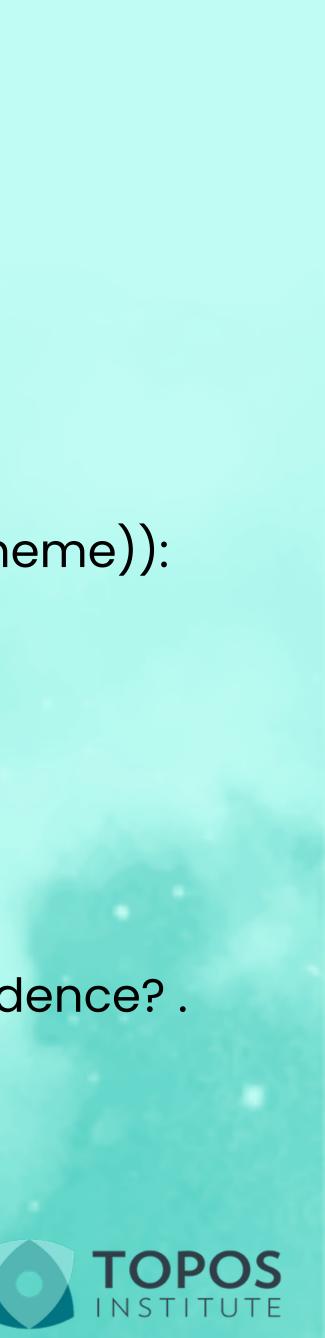
by Jean-Luc BRYLINSKI

GEOMETRY OF DELIGNE COHOMOLOGY

PAWEŁ GAJER

Twisting cochains and deformation theory

- Well-known correspondence:
 - locally free sheaves \leftrightarrow vector bundles \leftrightarrow principal GL_n -bundles
- Another well-known correspondence (in *algebraic* geometry (on a Noetherian affine scheme)):
 - I.f. sheaves \longleftrightarrow f.g. proj. modules
 - coherent sheaves \leftrightarrow f.g. modules
 - quasi-coherent sheaves ↔ modules
- Can we extend the first correspondence to the other two cases of the second correspondence? .
 ... Probably (maybe).
- The Maurer-Cartan equation, simplicial twisting cochains, etc., plus analytic HAG/DAG.



3. Yet another way to define vector bundles

- Take a Lie group G, and consider the presheaf Y_G on the category Man of smooth manifolds given by the Yoneda embedding: $Y_G = C^{\infty}(-, G)$.
- G (i.e. "pointwise-ly"), which gives us a presheaf Y_G of Lie groups.
- Hom $(*, *) \cong Man(M, G)$.
- We can take the nerve of this to obtain a presheaf $\mathcal{NB}Y_G$ of simplicial sets.
- Abstractly, we've built a functor $\mathcal{NB}Y$: LieGroup \rightarrow [Man^{op}, sSet].
- a functor $(\mathcal{N}^{op})^* \mathcal{N} \mathbb{B}Y$: LieGroup $\rightarrow [Man_{\mathcal{H}}^{op}, csSet]$.
- Finally, we can apply totalisation to this, and obtain $\operatorname{Tot}((\check{\mathcal{N}}^{\operatorname{op}})^*\mathscr{N}\mathbb{B}Y)\colon \operatorname{LieGroup} \to [\operatorname{Man}_{\mathscr{U}}^{\operatorname{op}}, \operatorname{sSet}].$

• We can endow this with the structure of a Lie group, thanks to the Lie group structure of

• We can deloop Y_G to obtain a presheaf $\mathbb{B}Y_G$ of one-object groupoids, i.e. for any smooth manifold M, we have the groupoid $\mathbb{B}Y_G(M)$ with one object * and with automorphisms

• We can pull this back along the (opposite of) the Čech nerve \mathcal{N} : Man_{$\mathcal{U}} \to [\Delta^{op}, Man]$ to get</sub>

- X in a precise way:
 - on X;

 - all higher π_i are zero.

• Lemma. $Tot((\mathring{N}^{op})^* \mathscr{N} \mathbb{B}Y_{GL_n(\mathbb{C})})(X, \mathscr{U})$ classifies complex vector bundles on

• its π_0 consists of isomorphism classes of $GL_n(\mathbb{C})$ -principal bundles

• its π_1 based at some isomorphism class [E] is the gauge group of E;

