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1. Why topology might seem 
useless



Being continuous is “easy”

• Every complex-manifold has an underlying topological space. 

• Every holomorphic map is continuous (and even infinitely 
differentiable). 

• Every holomorphic vector bundle has an underlying smooth vector 
bundle. 

• . . . 

• In general, there is a forgetful functor from “holomorphic structure” to 
“topological structure”.



Being holomorphic is “hard”

• If a holomorphic map is constant on any open neighbourhood then it 
is globally constant. 

• If a function is holomorphic on the whole of , then it is either constant, 
or such that  is either the whole of  or  for some . 

• If a holomorphic function has an essential singularity, then, on any 
punctured neighbourhood of this singularity, the function attains all 
values in , with at most a single exception, infinitely often. 

• . . .

ℂ
f(ℂ) ℂ ℂ∖{a} a ∈ ℂ

ℂ



2. Some counter-examples



Simplicial connections

• Given a vector bundle , a connection on  is a linear map 
 satisfying the Leibniz rule: . 

• Fact. Every smooth vector bundle admits a connection. 

• Fact. Most holomorphic vector bundles do not admit a (global) 
connection. 

• Lemma. If we replace  by the Čech nerve of  (a cofibrant 
replacement), and consider “simplicial connections”, then every 
holomorphic vector bundle admits a global “connection”. 

• Corollary. We can use Chern–Weil theory to calculate Chern 
classes (i.e. characteristic classes).

E → X E
∇ : Γ(E) → Γ(T*M ⊗ E) ∇( fs) = df ⊗ s + f ∇s

X X



Model categories, and Stein and Oka manifolds

• A good holomorphic analogue to being contractible (or even being 
affine) is being Stein: holomorphically convex and holomorphically 
separable. 

• An equivalent definition: there are “lots” of holomorphic maps  
(enough to embed  as a closed complex sub-manifold of ) 

• Dual to this is the notion of being Oka: having “lots” of holomorphic 
maps . 

• Formally, there is a model category which contains all complex 
manifolds, and with Stein manifolds being cofibrant and Oka manifolds 
fibrant (with so-called Oka maps being fibrations). 

• The h-principle (or Oka principle in complex geometry): when solutions 
to an analytic problem exist in the absence of topological obstructions.

X → ℂ
X ℂ

ℂ → X



Deligne cohomology

• Very well understood in the smooth case, but much less so in the 
holomorphic case. 

• The Deligne complex is given by the homotopy pullback of a 
truncated de Rham complex and . 

• More concretely, , which is quasi-
isomorphic to . 

• Sheaf cohomology of this complex classifies holomorphic 
connections on holomorphic line bundles (and, in higher degrees, 
holomorphic  connective structures on holomorphic gerbes)

ℤ

ℤD(p) = (2πi)pℤ ↪ Ω0 → Ω1 → … → Ωp−1

+× d log Ω1 → Ω2 → … → Ωp−1



Twisting cochains and deformation theory

• Well-known correspondence: 

locally free sheaves ⟷ vector bundles ⟷ principal -bundles 

• Another well-known correspondence (in algebraic geometry (on a Noetherian affine scheme)): 

l.f. sheaves ⟷ f.g. proj. modules 

coherent sheaves ⟷ f.g. modules 

quasi-coherent sheaves ⟷ modules 

• Can we extend the first correspondence to the other two cases of the second correspondence? . 
. . Probably (maybe). 

• The Maurer–Cartan equation, simplicial twisting cochains, etc., plus analytic HAG/DAG.

GLn



3. Yet another way to define 
vector bundles



• Take a Lie group , and consider the presheaf  on the category  of smooth 
manifolds given by the Yoneda embedding: . 

• We can endow this with the structure of a Lie group, thanks to the Lie group structure of 
 (i.e. “pointwise-ly”), which gives us a presheaf  of Lie groups. 

• We can deloop  to obtain a presheaf  of one-object groupoids, i.e. for any smooth 
manifold , we have the groupoid  with one object  and with automorphisms 

. 

• We can take the nerve of this to obtain a presheaf  of simplicial sets. 

• Abstractly, we’ve built a functor . 

• We can pull this back along the (opposite of) the Čech nerve  to get 
a functor . 

• Finally, we can apply totalisation to this, and obtain 
.

G YG ./0
YG = C∞( − , G)

G YG

YG 2YG
M 2YG(M) *

Hom( * , * ) ≅ ./0(M, G)

42YG

42Y : 56789:;< → [./0op, =>7?]

4̌ : ./0@ → [Δop, ./0]
(4̌op)*42Y : 56789:;< → [./0op

@ , B=>7?]

Tot((4̌op)*42Y ) : 56789:;< → [./0op
@ , =>7?]



• Lemma.  classifies complex vector bundles on 
 in a precise way: 

• its  consists of isomorphism classes of -principal bundles 
on ; 

• its  based at some isomorphism class  is the gauge group of ; 

• all higher  are zero.

Tot((4̌op)*42YGLn(ℂ))(X, @)
X

π0 GLn(ℂ)
X

π1 [E] E

πi


